GDCA

As the pioneer in COTS obsolescence management, GDCA is authorized by our OEM partners to continue to manufacture and repair the embedded legacy products critical to long-lasting applications. Using OEM-authorized IP and original specifications, GDCA provides repair, long-term customer support, manufacturing, and sustainment for over three thousand End-of-Life, COTS, and custom-embedded computer boards and systems.

  • Refurbished Boards: What works today may not be reliable tomorrow

    Refurbished Boards: What works today may not be reliable tomorrow

    Saying that something is “good enough for government work” is often meant as a joke and the reference implies “mediocre work.” The irony is that “government work” is often highly sophisticated; systems are designed and engineered to operate in the most extreme environmental conditions for a very long period of time.

    I recently had the pleasure of having lunch with a talented component engineer who has spent much of his career working in the defense industry.  During the course of our discussion I learned that some aviation systems need ICs to operate in temperature extremes ranging from -55°C to 125°C; ground units often travel in harsh environmental conditions (e.g. fighting extreme heat and sand storms in deserts) while being exposed to hostile attacks; satellites traveling through orbit are exposed to protons and heavy ions from solar flares, yet must operate reliably in space.

  • ERAI Executive Conference: Gaining Momentum in the Fight against Counterfeits

    ERAI Executive Conference: Gaining Momentum in the Fight against Counterfeits

    Managing components at-risk of going EOL requires proactive planning, otherwise critical systems become increasingly at-risk for encountering counterfeits

    Managing components at-risk of going EOL requires proactive planning, otherwise critical systems become increasingly at-risk for encountering counterfeits.
    Photo by Sebastian Dooris

    Managing components at risk of going EOL requires proactive planning. If this vital step is not implemented, critical systems run into increased risk of exposure to counterfeits. Two topics that program managers never want to hear about are counterfeit components, and end-of-life (EOL).  While it is possible to come across counterfeit components on active products, this risk can generally be mitigated by implementing smart buying practices, such as purchasing from a franchised distribution line or directly from the original component manufacturer (OCM).  Unfortunately, as components go EOL, yet are still needed in critical systems, they become difficult to find and increasingly more expensive. These facts combined with often careless buying practices, leave the embedded supply chain exposed to counterfeit components. These risks only increase as systems age.

  • Sometimes Obsolescence is a Good Thing

    Sometimes Obsolescence is a Good Thing

    Throughout my work with GDCA and all the issues around obsolescence, I have never come across someone who believes that obsolescence is something to be celebrated and welcomed.  Everything associated […]

  • Will sequestration increase the risk of counterfeit components in the supply chain?

    Will sequestration increase the risk of counterfeit components in the supply chain?

    Between Section 818 in the NDAA FY12 and the NDAA FY13 Amendment, the defense industry is highly aware of the risks of counterfeit components in the supply chain.  As a rule, logistics teams know not to purchase parts off EBay but from authorized sources, or purchase directly from the manufacturer.  They know about the SAE standards AS5553 and AS6081 for business processes and they know about guidelines for purchasing and authenticating components.

  • Looking at Legacy: Proactively managing the risk of counterfeit components

    Looking at Legacy: Proactively managing the risk of counterfeit components

    In general, defense sustainment and counterfeit avoidance has been left to DMSMS teams and logistics or engineering tactics.  However, so far the solution has primarily been to develop standards, authentication and anti-counterfeit technologies.  These responses have been critical, but have largely remained reactive and have not produced the dynamic collaboration crucial to maintaining a healthy, proactive supply chain.  Instead, each player is left facing inward — focusing on solutions from their own particular positions in the supply chain — but without the resources to truly be proactive.

  • The Risks of EOL: Lifetime Buy in “real world” terms

    The Risks of EOL: Lifetime Buy in “real world” terms

    In the past we’ve talked about the challenges of Last-time Buy and overstock.  In Dr. Sandborn’s CALCE Obsolescence Management training, this question illustrates the challenges and risks in regards to what customers can face, at the time of EOL.  The answer might be easy if you were looking at a “bridge buy”, where you only need enough to get you to the point of a planned upgrade.  If I had to only buy shoes to get me through five years it would be challenging but I could probably come up with a pretty good estimate based on the last five years of my life.

  • DNA tagging: A post production anti-counterfeit solution?

    DNA tagging: A post production anti-counterfeit solution?

    No matter what your opinion; DNA tagging is currently one of the top methods being discussed to ensure component authentication.  The Defense Logistics Agency (DLA) even issued a Request for Information on the subject.

    Unfortunately, due to the costs projected and associated with DNA tagging and authentication, few businesses appear to be looking forward to the prospect.

    At first glance DNA tagging, like many of the industry’s current solutions, makes sense:  increase the complexity of the marks so that counterfeiters are unable reproduce it. DNA would be a “tag” both difficult and expensive to try and recreate.  However, DNA tagging and many of the solutions being proposed are “point forward” solutions that, in order to be truly effective, would need to be implemented at the component manufacturing level, not once parts have left the factory floor.

  • Cutting Electronic Waste out of the Counterfeit Supply Chain

    Cutting Electronic Waste out of the Counterfeit Supply Chain

    According to the EPA, although electronic waste (or sometimes known as “e-waste”) is less than 10% of the current solid waste stream, it is growing 2-3 times faster than any other waste stream.   In 2005 an estimated 26-37 million computers became obsolete and the Consumer Electronics Association reported that roughly 304 million electronics—were removed from US households.

    E-waste impacts the international community in many ways.  New innovations in industrial and commercial technology have forced obsolescence in equipment like computers, mobile phones and televisions, and refrigerators.  As consumers keep up with changing trends, the United Nations Environmental Program (UNEP) estimates that 20-50 million metric tons of e-waste are generated each year and much of this electronic waste gets shipped overseas to developing areas in Asia, Africa, and South America.

Subscribe for Legacy Equipment Manufacturing News

Stay updated with Legacy Equipment Manufacturing (LEM) insights, trends, and solutions from GDCA.